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Abstract.
As symbolic regression (SR) has advanced into the early stages of com-

mercial exploitation, the poor accuracy of SR, still plaguing even the most
advanced commercial packages, has become an issue for early adopters. Users
expect to have the correct formula returned, especially in cases with zero noise
and only one basis function with minimally complex grammar depth.

At a minimum, users expect the response surface of the SR tool to be easily
understood, so that the user can know apriori on what classes of problems to
expect excellent, average, or poor accuracy. Poor or unknown accuracy is a
hinderence to greater academic and industrial acceptance of SR tools.

In two previous papers, we published a complex algorithm for modern
symbolic regression which is extremely accurate for a large class of Symbolic
Regression problems. The class of problems, on which SR is extremely ac-
curate, is described in detail in these two previous papers. This algorithm is
extremely accurate, in reasonable time on a single processor, for from 25 up
to 3000 features (columns).

Extensive statistically correct, out of sample training and testing, demon-
strated the extreme accuracy algorithm’s advantages over a previouly pub-
lished base line pareto algorithm in case where the training and testing data
contained zero noise.

While the algorithm’s extreme accuracy for deep problems with a large
number of features, on noiseless training data, is an impressive advance, there
are many very important academic and industrial SR problems where the
training data is very noisy.

In this chapter we test the extreme accuracy algorithm and compare the
results with the previously published baseline pareto algorithm. Both algo-
rithms’ performance are compared on a set of complex representative prob-
lems (from 25 to 3,000 features), on noiseless training, on noisy training data,
and on noisy training data with range shifted testing data.
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The enhanced algorithm is shown to be robust, with definite advantages
over the baseline pareto algorithm, performing well even in the face of noisy
training data and range shifted testing data.

Key words: Symbolic Regression, Abstract Expression Grammars, Gram-
mar Template Genetic Programming, Genetic Algorithms, Particle Swarm.
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1 Introduction

The discipline of Symbolic Regression (SR) has matured significantly in the
last few years. There is at least one commercial package on the market for
several years http://www.rmltech.com/. There is now at least one well doc-
umented commercial symbolic regression package available for Mathematica
www.evolved-analytics.com. There is at least one very well done open source
symbolic regression package available for free download http://ccsl.mae.cornell.edu/eureqa.
In addition to our own ARC system (Korns 2010), currently used internally
for massive (million row) financial data nonlinear regressions, there are a num-
ber of other mature symbolic regression packages currently used in industry
including (Smits 2005) and (Kotanchek 2008). Plus there is another commer-
cially deployed regression package which handles up to 50 to 10,000 input
features using specialized linear learning (McConaghy 2011).

Yet, despite the increasing sophistication of commercial SR packages, there
have been serious issues with SR accuracy even on simple problems (Korns
2011). Clearly the perception of SR as a must use tool for important prob-
lems or as an interesting heurism for shedding light on some problems, will
be greatly affected by the demonstrable accuracy of available SR algorithms
and tools. The depth and breadth of SR adoption in industry and academia
will be greatest if a very high level of accuracy can be demonstrated for SR
algorithms.

In (Korns 2012), (Korns 2013), and (Korns 2014) we published both a
baseline pareto algorithm and an extreme accuracy algorithm for modern
symbolic regression the (EA) algorithm. which is extremely accurate for a
large class of Symbolic Regression problems. The class of problems, on which
the EA algorithm is extremely accurate, is described in detail in those papers
and also in this chapter. A definition of extreme accuracy is provided, and an
informal argument of extreme SR accuracy is outlined in (Korns 2013), and
(Korns 2014).

Prior to writing this chapter, a great deal of tinker-egineering was per-
formed on the Lisp code supporting both the baseline and the EA algorithms.
For instance, all generated champion code was checked to make sure that the
real numbers were loaded into Intel machine registers without exception. All
vector pointers were checked to make sure they were loaded into Intel address
registers at the start of each loop rather than re-loaded with each feature ref-
erence. As a result of these engineering efforts, both the baseline and the EA
algorithms are now quite practical to run on a personal computer. Further-
more the EA algorithm is extremely accurate, in reasonable time, on a single
processor, for from 25 to 3,000 features (columns); and, a cloud configuration
can be used to achieve the extreme accuracy performance in much shorter
elapsed times.

In this chapter we test the EA algorithm (Korns 2013) and (Korns 2014)
and compare the results with the baseline algorithm (Korns 2012). Extensive
statistically correct, out of sample training and testing, are used to compare
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both algorithms’ performance, on a set of complex representative problems
(from 25 to 3,000 features), on noiseless training, on noisy training data, and
on noisy training data with range shifted testing data.

The EA algorithm is shown to be robust, with definite advantages over the
baseline pareto algorithm, performing well even in the face of noisy training
data with range shifted testing data.

Before continuing with the comparisons of the baseline and EA algorithms,
we proceed with a basic introduction to general nonlinear regression. Nonlin-
ear regression is the mathematical problem which Symbolic Regression aspires
to solve. The canonical generalization of nonlinear regression is the class of
Generalized Linear Models (GLMs) as described in (Nelder 1972). A GLM is
a linear combination of I basis functions Bi; i = 0,1, I, a dependent variable
y, and an independent data point with M features x = <x0, x1, x2, , xM−1>:
such that

• (E1) y = γ(x) = c0 + ΣciBi(x) + err

As a broad generalization, GLMs can represent any possible nonlinear
formula. However the format of the GLM makes it amenable to existing linear
regression theory and tools since the GLM model is linear on each of the
basis functions Bi. For a given vector of dependent variables, Y, and a vector
of independent data points, X, symbolic regression will search for a set of
basis functions and coefficients which minimize err. In (Koza 1992) the basis
functions selected by symbolic regression will be formulas as in the following
examples:

• (E2) B0 = x3

• (E3) B1 = x1+x4

• (E4) B2 = sqrt(x2)/tan(x5/4.56)
• (E5) B3 = tanh(cos(x2*.2)*cube(x5+abs(x1)))

If we are minimizing the normalized least squared error, NLSE (Korns
2012), once a suitable set of basis functions B have been selected, we can
discover the proper set of coefficients C deterministically using standard uni-
variate or multivariate regression. The value of the GLM model is that one
can use standard regression techniques and theory. Viewing the problem in
this fashion, we gain an important insight. Symbolic regression does not add
anything to the standard techniques of regression. The value added by sym-
bolic regression lies in its abilities as a search technique: how quickly and how
accurately can SR find an optimal set of basis functions B. The immense size
of the search space provides ample need for improved search techniques. In
basic Koza-style tree-based Genetic Programming (Koza 1992) the genome
and the individual are the same Lisp s-expression which is usually illustrated
as a tree. Of course the tree-view of an s-expression is a visual aid, since a
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Lisp s-expression is normally a list which is a special Lisp data structure.
Without altering or restricting basic tree-based GP in any way, we can view
the individuals not as trees but instead as s-expressions such as this depth
2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2)), or this depth 2 irregular tree
s-exp: (/ (+ x4 3.45) 2.0).

In basic GP, applied to symbolic regression, the non-terminal nodes are
all operators (implemented as Lisp function calls), and the terminal nodes are
always either real number constants or features. The maximum depth of a
GP individual is limited by the available computational resources; but, it is
standard practice to limit the maximum depth of a GP individual to some
manageable limit at the start of a symbolic regression run.

Given any selected maximum depth k, it is an easy process to construct
a maximal binary tree s-expression Uk, which can be produced by the GP
system without violating the selected maximum depth limit. As long as we
are reminded that each f represents a function node while each t represents a
terminal node (either a feature v or a real number constant c), the construction
algorithm is simple and recursive as follows.

• (U0): t
• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (Uk): (f Uk−1 Uk−1)

The basic GP symbolic regression system (Koza 1992) contains a set of
functions F, and a set of terminals T. If we let t ∈ T, and f ∈ F ∪ ξ, where
ξ(a,b) = ξ(a) = a, then any basis function produced by the basic GP system
will be represented by at least one element of Uk. Adding the ξ function allows
Uk to express all possible basis functions generated by the basic GP system
to a depth of k. Note to the reader, the ξ function performs the job of a
pass-through function. The ξ function allows a fixed-maximal-depth expression
in Uk to express trees of varying depth, such as might be produced from a
GP system. For instance, the varying depth GP expression x2 + (x3 - x5) =
ξ(x2,0.0) + (x3 - x5) = +(ξ(x2 0.0) -(x3 x5)) which is a fixed-maximal-depth
expression in U2.

In addition to the special pass through function ξ, in our system we also
make additional slight alterations to improve coverage, reduce unwanted er-
rors, and restrict results from wandering into the complex number range. All
unary functions, such as cos, are extended to ignore any extra arguments so
that, for all unary functions, cos(a,b) = cos(a). The sqroot and ln functions
are extended for negative arguments so that sqroot(a) = sqroot(abs(a)) and
ln(a) = ln(abs(a)).

Given this formalism of the search space, it is easy to compute the size of
the search space, and it is easy to see that the search space is huge even for
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rather simple basis functions. For our use in this chapter the function set will
be the following functions: F = (+ - * / abs inv cos sin tan tanh sqroot
square cube quart exp ln ξ) (where inv(x) = 1.0/x). The terminal set is
the features x0 through xM−1 and the real constant c, which we shall consider
to be 218 in size.

Our core assertion in this chapter is that the enhanced EA algorithm
will achieve, on a laptop computer, in reasonable time, extremely accurate
champions for all of the problems in U2(1)[25], U1(25)[25], U1(5)[150],
and in F(x)(5)[3000] (note: F(x) = ξ inv abs sqroot square cube quart exp ln
cos sin tan tanh) in reasonable computation times, of a maximum 20 hours
(on an advanced laptop built in Dec 2012) and a maximum 40 hours (on an
advanced laptop built in Jan 2008). Most noiseless problems finish far quicker
than these maximum time horizons.

Pushing things to the extreme, the enhanced algorithm will achieve ex-
tremely accurate champions for all of the problems in U2(1)[50] through
U1(5)[50] in a maximum of 160 hours (on an advanced laptop built in Dec
2012). Most noiseless problems finish far quicker than these maximum time
horizons.

Obviously a cloud configuration will greatly speed up the enhanced EA
algorithm, and we will address cloud configurations and extreme accuracy in
a later paper. For this chapter, we will develope an extremely accurate SR
algorithm which any scientist can use on their personal laptop.

1.1 Example Test Problems

In this section we list the example test problems which we will address. All
of these test problems lie in the domain of either U2(1)[25], U1(25)[25],
U1(5)[150], or F(x)(5)[3000], where the function set F(x) = (ξ inv abs
sqroot square cube quart exp ln cos sin tan tanh), and the terminal
set is the features x0 thru xM−1 plus the real number constant c with cbit =
18. Our training data sets will contain 25 features, 150, and 3,000 features as
specified. Our core assertion is that the enhanced algorithm will find extremely
accurate champions for all of these problems and for all similar problems
in practical time on a laptop computer.

Similar problems are easily obtained by substituting all other possibili-
ties within U2(1)[25], U1(25)[25], U1(5)[150], or F(x)(5)[3000]. For in-
stance one problem in U2(1)[25] is y = 1.687 + (94.183*(x3*x2)).
By substitution, y = 1.687 + (94.183*(x3/x2)) and y = 1.687 +
(94.183*(x23*x12)) are also in U2(1)[25]. Another problem in U2(1)[25]
is y = -2.36 + (28.413*ln(x2)/x3). By substitution, y = -2.36 +
(28.413*cos(x12)*x6) and y = -2.36 + (28.413*sqroot(x21)-x10) are also
in U2(1)[25]. Our core assertion is that the EA algorithm not only finds accu-
rate solutions to the 45 test problems listed below, but also to all other possible
test problems in U2(1)[25], U1(25)[25], U1(5)[150], or F(x)(5)[3000].
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• Deep problems in U2(1)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T1): y = 1.57 + (14.3*x3)
• (T2): y = 3.57 + (24.33/x3)
• (T3): y = 1.687 + (94.183*(x3*x2))
• (T4): y = 21.37 + (41.13*(x3/x2))
• (T5): y = -1.57 + (2.3*((x3*x0)*x2))
• (T6): y = 9.00 + (24.983*((x3*x0)*(x2*x4)))
• (T7): y = -71.57 + (64.3*((x3*x0)/x2))
• (T8): y = 5.127 + (21.3*((x3*x0)/(x2*x4)))
• (T9): y = 11.57 + (69.113*((x3*x0)/(x2+x4)))
• (T10): y = 206.23 + (14.2*((x3*x1)/(3.821-x4)))
• (T11): y = 0.23 + (19.2*((x3-83.519)/(93.821-x4)))
• (T12): y = 0.283 + (64.2*((x3-33.519)/(x0-x4)))
• (T13): y = -2.3 + (1.13*sin(x2))
• (T14): y = 206.23 + (14.2*(exp(cos(x4))))
• (T15): y = -12.3 + (2.13*cos(x2*13.526))
• (T16): y = -12.3 + (2.13*tan(95.629/x2))
• (T17): y = -28.3 + (92.13*tanh(x2*x4))
• (T18): y = -222.13 + (-0.13*tanh(x2/x4))
• (T19): y = -2.3 + (-6.13*sin(x2)*x3)
• (T20): y = -2.36 + (28.413*ln(x2)/x3)
• (T21): y = 21.234 + (30.13*cos(x2)*tan(x4))
• (T22): y = -2.3 + (41.93*cos(x2)/tan(x4))
• (T23): y = .913 + (62.13*ln(x2)/square(x4))
• Narrow problems in U1(2to3)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T24): y = 13.3 + (80.23*x2) + (1.13*x3)
• (T25): y = 18.163 + (95.173/x2) + (1.13/x3)
• (T26): y = 22.3 + (62.13*x2) + (9.23*sin(x3))
• (T27): y = 93.43 + (71.13*tanh(x3)) + (41.13*sin(x3))
• (T28): y = 36.1 + (3.13*x2) + (1.13*x3) + (2.19*x0)
• Wide problems in U1(5)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T29): y = -9.16 + (-9.16*x24*x0) + (-19.56*x20*x21) + (21.87*x24*x2) +

(-17.48*x22*x23) + (38.81*x23*x24)
• (T30): y = -9.16 + (-9.16*x24/x0) + (-19.56*x20/x21) + (21.87*x24/x2) +

(-17.48*x22/x23) + (38.81*x23/x24)
• Broad problems in F(x)(5)[3000]
• ..Note: these problems trained on 5,000 examples with 3,000 features each
• ..Note: F(x) = noop inv abs sqroot square cube quart exp ln cos sin tan

tanh
• (T31): y = 50.63 + (63.6*cube(x0)) + (66.54*cube(x1)) + (32.95*cube(x2))

+ (4.87*cube(x3)) + (46.49*cube(x4))
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• (T32): y = -9.16 + (-9.16*square(x0)) + (-19.56*ln(x123)) + (21.87*exp(x254))
+ (-17.48*x3) + (38.81*x878)

• (T33): y = 0.0 + (1*square(x0)) + (2*square(x1)) + (3*square(x2)) +
(4*square(x3)) + (5*square(x4))

• (T34): y = 65.86 + (79.4*sin(x0)) + (45.88*cos(x1)) + (2.13*tan(x2)) +
(4.6*sin(x3)) + (61.47*cos(x4))

• (T35): y = 1.57 + (1.57/x923) + (-39.34*sin(x1)) + (2.13*x2) + (46.59*cos(x932))
+ (11.54*x4)

• (T36): y = 50.63 + (63.6*sqroot(x0)) + (66.54*sqroot(x1)) + (32.95*sqroot(x2))
+ (4.87*sqroot(x3)) + (46.49*sqroot(x4))

• (T37): y = 92.25 + (53.53*square(2.3*x0)) + (88.26*cos(x1)) + (42.11/x4)
+ (29.0*cube(x3)) + (93.6*tanh(x4))

• Broad problems in U1(5)[150]
• ..Note: these problems trained on 10,000 examples with 150 features each
• (T38): y = -9.16 + (-9.16*x124*x0) + (-19.56*x120*x21) + (21.87*x24*x26)

+ (-17.48*x122*x23) + (38.81*x123*x24)
• (T39): y = -9.16 + (-9.16*x124/x0) + (-19.56*x20/x92) + (21.87*x102/x2)

+ (-17.48*x22/x143) + (38.81*x23/x149)
• (T40): y = -9.16 + (-9.16*cos(0)) + (-19.56*x20/x21) + (21.87*square(x125))

+ (-17.48*x22/x23) + (38.81*tanh(x24))
• Dense problems in U1(25)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T41): y = 50.63 + (63.6*cube(x0)) + (66.54*square(x1)) + (32.95*quart(x2))

+ (4.87*cube(x3)) + (46.49*square(x4)) + (62.85*quart(x5)) + (90.45*cube(x6))
+ (63.28*square(x7)) + (42.15*quart(x8)) + (73.03*cube(x9)) + (92.2*square(x10))
+ (77.99*quart(x11)) + (56.67*cube(x12)) + (72.51*square(x13)) + (49.77*quart(x14))
+ (56.94*cube(x15)) + (54.76*square(x16)) + (23.11*quart(x17)) + (56.03*cube(x18))
+ (51.98*square(x19)) + (11.71*quart(x20)) + (33.82*cube(x21)) + (46.25*square(x22))
+ (32.98*quart(x23)) + (36.06*cube(x24))

• (T42): y = -9.16 + (-9.16*x4*x0) + (-19.56*x0*x1) + (21.87*x1*x2)
+ (-17.48*x2*x3) + (38.81*x3*x4) + (3.1*x4*x5) + (59.81*x5*x6) +
(93.1*x6*x7) + (.81*x7*x8) + (9.21*x8*x9) + (-5.81*x9*x10) + (-.01*x10*x11)
+ (4.21*x11*x12) + (68.81*x12*x13) + (-8.81*x13*x14) + (2.11*x14*x15)
+ (-7.11*x15*x16) + (-.91*x16*x17) + (20.0*x17*x18) + (1.81*x18*x19)
+ (9.71*x19*x20) + (8.1*x20*x21) + (6.1*x21*x22) + (18.51*x22*x23) +
(7.1*x23*x24)

• (T43): y = 0.0 + (1*square(x0)) + (2*square(x1)) + (3*square(x2)) +
(4*square(x3)) + (5*square(x4)) + (6*square(x5)) + (7*square(x6)) +
(8*square(x7)) + (9*square(x8)) + (10*square(x9)) + (11*square(x10)) +
(12*square(x11)) + (13*square(x12)) + (14*square(x13)) + (15*square(x14))
+ (16*square(x15)) + (17*square(x16)) + (18*square(x17)) + (19*square(x18))
+ (20*square(x19)) + (21*square(x20)) + (22*square(x21)) + (23*square(x22))
+ (24*square(x23)) + (25*square(x24))

• (T44): y = 65.86 + (79.4*sin(x0)) + (45.88*cos(x1)) + (2.13*tan(x2))
+ (4.6*sin(x3)) + (61.47*cos(x4)) + (30.64*tan(x5)) + (51.95*sin(x6)) +
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(47.83*cos(x7)) + (4.21*tan(x8)) + (37.84*sin(x9)) + (62.57*cos(x10)) +
(4.68*tan(x11)) + (32.65*sin(x12)) + (86.89*cos(x13)) + (84.79*tan(x14))
+ (31.72*sin(x15)) + (90.4*cos(x16)) + (93.57*tan(x17)) + (42.18*sin(x18))
+ (47.91*cos(x19)) + (41.48*tan(x20)) + (39.47*sin(x21)) + (48.44*cos(x22))
+ (34.75*tan(x23)) + (56.7*sin(x24))

• (T45): y = 1.57 + (1.57*x0) + (-39.34*sin(x1)) + (2.13*x2) + (46.59*(x3/x2))
+ (11.54*x4) + (30.64*ln(x5)) + (51.95*abs(x6)) + (47.83*(x7*x3)) +
(4.21*quart(x8)) + (37.84*x9) + (62.57*square(x10)) + (4.68*sqroot(x11))
+ (32.65*(x12/x3)) + (86.89*x14) + (84.79*tan(x15)) + (31.72*cube(x16))
+ (90.4*(x17*x18)) + (93.57*(x17/x16)) + (42.18*sin(x18)) + (47.91*cos(x19))
+ (41.48*ln(x20)) + (39.47*square(x21)) + (48.44*x22) + (34.75*(x23*x24))
+ (56.7*x24)

2 Training with Zero Noise

In Table 1 and Table 2 we compare the SR performance of the baseline
algorithm and the EA algorithm, on noiseless training data, using statistical
best practices out-of-sample testing methodology, requires the following pro-
cedure. For each sample test problem, a matrix of independent variables is
filled with random numbers between -10 and +10. Then the specified sam-
ple test problem formula is applied to produce the dependent variable. These
steps will create the training data (each matrix row is a training example and
each matrix column is a feature). A symbolic regression will be run on the
training data to produce the champion estimator. Next a matrix of indepen-
dent variables is filled with random numbers between -10 and +10. Then the
specified sample test problem formula is applied to produce the dependent
variable. These steps will create the testing data. The fitness score is the root
mean squared error divided by the standard deviation of Y, NLSE. The es-
timator will be evaluated against the testing data producing the final NLSE
for comparison.

In Table 1 and Table 2 the baseline algorithm and the EA algorithm
will be trained on each of the 45 sample test problems for comparison. The
baseline algorithm halts automatically when it achieves an extremely accurate
champion on the training data. The EA algorithm algorithm halts automati-
cally when it achieves an extremely accurate champion on the training data;
but the EA algorithm also halts automatically when it has exhausted it pre-
defined search pattern. Each algorithm will be given a maximum of 20 hours
for completion, at which time, if the SR has not already halted, the SR run
will be terminated and the best available candidate will be selected as the
final estimator champion.
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Table 1. Baseline Accuracy Zero Noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute
T01 2K 0.03 0.0000 0.0000 yes
T02 2K 0.02 0.0000 0.0000 yes
T03 2K 0.03 0.0000 0.0000 yes
T04 11K 0.11 0.0000 0.0000 yes
T05 812K 9.00 0.0000 0.0000 yes
T06 1246K 20.00 0.5364 0.7727 no
T07 112K 1.29 0.0000 0.0000 yes
T08 1221K 20.00 0.0034 0.1354 no
T09 1240K 20.00 0.0484 0.9999 no
T10 1242K 20.00 0.0185 0.9999 no
T11 1117K 20.00 0.0317 0.9999 no
T12 1414K 20.00 0.0244 0.9999 no
T13 5K 0.05 0.0000 0.0000 yes
T14 9K 0.09 0.0000 0.0000 yes
T15 724K 20.00 0.8540 0.9348 no
T16 884K 20.00 0.0077 0.9999 no
T17 10K 0.10 0.0000 0.0000 yes
T18 360K 4.51 0.0000 0.0000 yes
T19 73K 0.86 0.0000 0.0000 yes
T20 356K 4.41 0.0000 0.0000 yes
T21 908K 20.00 0.0560 0.0222 no
T22 908K 20.00 0.0568 0.0602 no
T23 621K 8.21 0.0000 0.9999 no
T24 5K 0.05 0.0000 0.0000 yes
T25 77K 0.88 0.0000 0.0000 yes
T26 17K 0.18 0.0000 0.0000 yes
T27 79K 0.85 0.0000 0.0000 yes
T28 10K 0.10 0.0000 0.0000 yes
T29 870K 20.00 0.1324 0.1334 no
T30 900K 20.00 0.0290 0.0099 no
T31 900K 20.00 0.2104 0.2289 no
T32 179K 8.06 0.0000 0.0000 yes
T33 280K 20.00 0.2435 0.2398 no
T34 283K 20.00 0.2028 0.2412 no
T35 251K 20.00 0.0511 0.0540 no
T36 333K 20.00 0.4524 0.4755 no
T37 255K 11.97 0.0000 0.0000 yes
T38 275K 20.00 0.7453 0.8026 no
T39 282K 20.00 0.0403 0.9999 no
T40 249K 20.00 0.0022 0.9999 no
T41 854K 20.00 0.0455 0.0645 no
T42 978K 20.00 0.8415 0.9999 no
T43 507K 20.00 0.3838 0.8082 no
T44 517K 20.00 0.0062 0.9999 no
T45 517K 20.00 0.0024 0.9999 no

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fitness
score of the champion on the noiseless training data is listed in the (Train-NLSE)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .3551 average fitness) (Note5: the absolute
accuracy of the SR is given in the (Absolute) column with 19 absoutely accurate)
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Table 2. Extreme Accuracy Zero Noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute
T01 1K 0.01 0.0000 0.0000 yes
T02 1K 0.01 0.0000 0.0000 yes
T03 34K 0.13 0.0000 0.0000 yes
T04 20K 0.11 0.0000 0.0000 yes
T05 135K 0.26 0.0000 0.0000 yes
T06 243K 0.40 0.0000 0.0000 yes
T07 137K 0.29 0.0000 0.0000 yes
T08 255K 0.42 0.0000 0.0000 yes
T09 2935K 2.19 0.0000 0.0000 yes
T10 5087K 3.94 0.0000 0.0000 yes
T11 576K 0.69 0.0000 0.0000 yes
T12 198K 0.40 0.0000 0.0000 yes
T13 1K 0.01 0.0000 0.0000 yes
T14 37K 0.15 0.0000 0.0000 yes
T15 1432K 1.31 0.0000 0.0000 yes
T16 1963K 1.70 0.0000 0.0000 yes
T17 3869K 3.30 0.0000 0.0000 yes
T18 3927K 3.31 0.0000 0.0000 yes
T19 972K 1.05 0.0000 0.0000 yes
T20 644K 0.78 0.0000 0.0000 yes
T21 8268K 6.96 0.0000 0.0000 yes
T22 25365K 15.35 0.0000 0.0000 yes
T23 25675K 15.66 0.0000 0.0000 yes
T24 1K 0.01 0.0000 0.0000 yes
T25 1K 0.01 0.0000 0.0000 yes
T26 1K 0.01 0.0000 0.0000 yes
T27 1K 0.01 0.0000 0.0000 yes
T28 1K 0.01 0.0000 0.0000 yes
T29 453K 0.60 0.0000 0.0000 yes
T30 143K 0.31 0.0000 0.0000 yes
T31 113K 2.05 0.0000 0.0000 yes
T32 51K 1.10 0.0000 0.0000 yes
T33 232K 3.00 0.0000 0.0000 yes
T34 1471K 13.47 0.0000 0.0000 yes
T35 715K 7.36 0.0000 0.0000 yes
T36 139K 2.44 0.0000 0.0000 yes
T37 465K 5.02 0.0000 0.0000 yes
T38 599K 4.99 0.0000 0.0000 yes
T39 134K 1.21 0.0000 0.0000 yes
T40 255K 2.23 0.0000 0.0000 yes
T41 24K 0.38 0.0000 0.0000 yes
T42 1901K 8.25 0.0000 0.0000 yes
T43 119K 1.14 0.0000 0.0000 yes
T44 80K 0.81 0.0000 0.0000 yes
T45 216K 1.87 0.0000 0.0000 yes

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fitness
score of the champion on the noiseless training data is listed in the (Train-NLSE)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .0000 average fitness) (Note5: the absolute
accuracy of the SR is given in the (Absolute) column with 45 absolutely accurate)
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In Table 1 and Table 2, the Test column contains the identifier of the
sample test problem (T01 thorugh T45). The WFFs column contains the
number of regression candidates tested before finding a solution. The Train-
Hrs column contains the elapsed hours spent training on the training data
before finding a solution. The Train-NLSE column contains the fitness score
of the champion on the noiseless training data. The Test-NLSE column con-
tains the fitness score of the champion on the noiseless testing data. The
Absolute column contains yes if the resulting champion contains a set of
basis functions which are algebraically equivalent to the basis functions in the
specified test problem.

For the purposes of this algorithm, extremely accurate will be defined
as any champion which achieves a normalized least squares error (NLSE) of
.0001 or less on the noiseless testing data. In the tables of results, in this
chapter, the noisless test results are listed under the Test-NLSE column
header.

Obviously extreme accuracy is not the same as absolute accuracy and is
therefore fragile under some conditions. Extreme accuracy will stop at the
first estimator which achieves an NLSE of 0.0 on the noiseless training data,
and hope that the estimator will achieve an NLSE of .0001 or less on the
testing data. Yes, an extremely accurate algorithm is guaranteed to find a
perfect champion (estimator training fitness of 0.0) if there is one to be
found; but, this perfect champion may or may not be the estimator which
was used to create the testing data. For instance in the target formula y
= 1.0 + (100.0*sin(x0)) + (.001*square(x0)) we notice that the final term
(.0001*square(x0)) is less significant at low ranges of x0; but, as the absolute
magnitude of x0 increases, the final term is increasingly significant. And, this
does not even cover the many issues with problematic training data ranges
and poorly behaved target formulas within those ranges. For instance, creat-
ing training data in the range -1000 to 1000 for the target formula y = 1.0 +
exp(x2*34.23) runs into many issues where the value of y exceeds the range of
a 64 bit IEEE real number. So as one can see the concept of extreme acuracy
is just the beginning of the attempt to conquer the accuracy problem in SR.

For the purposes of this algorithm, absolutely accurate will be defined
as any champion which contains a set of basis functions which are algebraically
equivalent to the basis functions in the specified test problem. In the tables
of results, in this chapter, the absolute accuracy results are listed under the
Absolute column header. ”Yes” indicates that the resulting champion con-
tains a set of basis functions which are algebraically equivalent to the basis
functions in the specified test problem.

As mentioned, each of the problems were trained and tested on from 25 to
3,000 features as specified using out of sample testing. The allocated maximum
time to complete a test problem on our laptop environment was 20 hours, at
which time training was automatically halted and the best champion was
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returned as the answer. However, most problems finished well ahead of that
maximum time limit.

All timings quoted in these tables were performed on a Dell XPS L521X
Intel i7 quad core laptop with 16Gig of RAM, and 1Tb of hard drive, manu-
factured in Dec 2012 (our test machine).

Note: testing a single regression champion is not cheap. At a minimum
testing a single regression champion requires as many evaluations as there are
training examples as well as performing a simple regression. At a maximum
testing a single regression champion may require performing a much more
expensive multiple regression.

The results in baseline Table 1 demonstrate only intermittant accuracy on
the 45 test problems. Baseline accuracy is very good with 1, 2, or 5 features
in the training data. Unfortunately, Baseline accuracy decreases rapidly as
the number of features in the training data increases to 25, 100, and 3000.
Furthermore, there is a great deal of overfitting as evidenced by the number
of test cases with good training scores and very poor testing scores.

The baseline algorithm also suffers from bloat. This is often the reason
for the baseline’s frequent failure to discover the absolutely accurate for-
mula. For instance, in test problem T19, the correct formula is: y = -2.3
+ (-6.13*sin(x2)*x3). The baseline algorithm returns a champion of y = -
2.3000000000033-(6.13*((0.008*(x3*125.0))*sin(x2)))+(0.0000000000033*tanh(square(x23))).
The first term, (0.008*(x3*125.0)), and the last term, (0.0000000000033*tanh(square(x23))),
are bloat and will cause serious problems in range shifted data.

In such cases of overfitting, SR becomes deceptive. It produces tantaliz-
ing candidates which, from their training NLSE scores, look really exciting.
Unfortunately, they fail miserably on the testing data.

Clearly the baseline testing results in Table 1 demonstrate an opportunity
for improved accuracy.

Another serious issue with the baseline algorithm is that negative results
have no explicit meaning. For example, Alice runs the baseline algorithm
on a large block of data for the maximum time specified. At the conculsion
of the maximum specified generations, reqiring a maximum of 20 hours on
our laptop, no candidate with a zero NLSE (perfect score) is returned. The
meaning of this negative result is indeterminate, as one can argue that perhaps
if Alice were to run the baseline algorithm for a few more generations an exact
candidate would be discovered.

Significantly, the EA results in Table 2 demonstrate extreme accuracy
on the 45 test problems. This extreme accuracy is robust even in the face
of problems with large number of features. More importantly, the EA algo-
rithm achieved a perfect score on absolute accuracy. In the case of all 45 test
problems, the EA algorithm was consistently absolutely accurate.
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Notice the extreme search efficiency which Table 2 demonstrates. Our
assertion is that the EA algorithm is getting the same accuracy on U2(1)[25],
U1(25)[25], U1(5)[150], and F(x)(5)[3000] as if each and every single element
of those sets were searched serially; and yet we are never testing more than a
few million regression candidates.

Another very important benefit of extreme accuracy will only be fully real-
ized when all undiscovered errors are worked out of our informal argument for
extreme accuracy and when our informal argument is crafted into a complete,
peer reviewed, well accepted, formal mathematical proof of accuracy. Once
this goal is achieved, we can begin to make modus tollens arguments from
negative results!

For example, our future Alice runs the EA algorithm on a large block of
data for the maximum time specified. At the conculsion of the maximum time
of 20 hours on our laptop, no candidate with a zero NLSE (perfect score)
is returned. Refering to the published, well accepted formal mathematical
proof of accuracy, Alice argues (modus tollens) that there exists no exact
relationship bewteen X and Y anywhere within U2(1)[25], U1(25)[25], and
U1(5)[150] through Fx(5)[3000].

3 Training With Noisy Data

In Table 3 and Table 4 we compare the SR performance of the baseline
algorithm and the EA algorithm, on noisy training data, using statistical best
practices out-of-sample testing methodology, requires the following procedure.
For each sample test problem, a matrix of independent variables is filled with
random numbers between -10 and +10. Then the specified sample test problem
formula is applied to produce the dependent variable. Then 20% noise is added
to the dependent variable according to the following formula: y = (y*.8) +
random(y*.4). These steps will create the training data. A symbolic regression
will be run on the training data to produce the champion estimator. Next a
matrix of independent variables is filled with random numbers between -10 and
+10. Then the specified sample test problem formula is applied to produce the
dependent variable. No noise is added to the testing dependent variable. These
steps will create the testing data. The fitness score is the root mean squared
error divided by the standard deviation of Y, NLSE. The estimator will be
evaluated against the testing data producing the final NLSE for comparison.

In Table 3 nd Table 4 the baseline algorithm and the EA algorithm
will be trained on each of the 45 sample test problems for comparison. Each
algorithm will be given a maximum of 20 hours for completion, at which time,
if the SR has not already halted, the SR run will be terminated and the best
available candidate will be selected as the final estimator champion.



Highly Accurate Symbolic Regression with Noisy Training Data 15

Table 3. Baseline Accuracy 20% Noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute
T01 1366K 20.00 0.0355 0.0187 yes
T02 1274K 20.00 0.0010 0.1100 no
T03 1142K 20.00 0.0991 0.9920 no
T04 1284K 20.00 0.0005 0.0536 yes
T05 1155K 20.00 0.0807 0.9999 no
T06 1201K 20.00 0.7324 0.9999 no
T07 1181K 20.00 0.0119 0.9999 no
T08 1214K 20.00 0.0017 0.9999 no
T09 1308K 20.00 0.0448 0.9999 no
T10 1210K 20.00 0.0152 0.9999 no
T11 1230K 20.00 0.0124 0.9999 no
T12 1286K 20.00 0.0189 0.9999 no
T13 1292K 20.00 0.2973 0.4052 no
T14 1242K 20.00 0.8214 0.9999 no
T15 1135K 20.00 0.8849 0.9999 no
T16 1196K 20.00 0.0370 0.9999 no
T17 1230K 20.00 0.1125 0.1339 no
T18 1057K 20.00 0.8900 0.9999 no
T19 1163K 20.00 0.1059 0.0382 no
T20 1227K 20.00 0.0002 0.1992 no
T21 1040K 20.00 0.0120 0.8882 no
T22 934K 20.00 0.0007 0.2953 no
T23 1132K 20.00 0.0001 0.9999 no
T24 1141K 20.00 0.1061 0.1734 no
T25 1054K 20.00 0.0010 0.0657 no
T26 1068K 20.00 0.1070 0.9999 no
T27 1087K 20.00 0.1555 0.9999 no
T28 1112K 20.00 0.2023 0.9999 no
T29 972K 20.00 0.6108 0.9961 no
T30 921K 20.00 0.0115 0.9999 no
T31 247K 20.00 0.1200 0.0607 no
T32 259K 20.00 0.0716 0.0148 no
T33 265K 20.00 0.3946 0.3038 no
T34 288K 20.00 0.3975 0.9999 no
T35 273K 20.00 0.3073 0.8116 no
T36 248K 20.00 0.6486 0.5438 no
T37 309K 20.00 0.1196 0.0677 no
T38 1578K 20.00 0.6697 0.6780 no
T39 1034K 20.00 0.0215 0.9952 no
T40 1505K 20.00 0.1097 0.2328 no
T41 590K 20.00 0.2731 0.2731 no
T42 694K 20.00 0.3174 0.3327 no
T43 780K 20.00 0.4356 0.9263 no
T44 800K 20.00 0.6293 0.8469 no
T45 814K 20.00 0.1069 0.0717 no

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fit-
ness score of the champion on the noisy training data is listed in the (Train-NLSE)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .6339 average fitness) (Note5: the absolute
accuracy of the SR is given in the (Absolute) column with 2 absolutely accurate)
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Table 4. Extreme Accuracy 20% Noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute
T01 26861K 19.38 0.0993 0.0059 yes
T02 26897K 19.61 0.0003 0.0000 yes
T03 26922K 19.78 0.1014 0.0133 yes
T04 26910K 18.84 0.0004 0.0000 yes
T05 26877K 18.61 0.0948 0.0000 yes
T06 26922K 18.83 0.1157 0.0000 yes
T07 26948K 18.98 0.0025 0.0000 yes
T08 26982K 19.98 0.0009 0.0000 yes
T09 26897K 20.11 0.0176 0.0000 yes
T10 26877K 19.33 0.0129 0.2877 yes
T11 26924K 20.28 0.6912 0.0747 no
T12 26879K 19.73 0.0043 0.0185 no
T13 26907K 19.99 0.3199 0.0000 yes
T14 26896K 19.96 0.8487 0.2350 no
T15 26930K 20.16 0.6712 0.1581 yes
T16 26870K 21.84 0.0119 0.4315 yes
T17 26949K 21.88 0.1227 0.0000 yes
T18 26865K 21.93 0.8763 0.9999 no
T19 26896K 22.06 0.1085 0.0000 yes
T20 26878K 22.73 0.0007 0.0668 no
T21 26983K 23.44 0.0013 0.0000 yes
T22 26886K 22.74 0.0027 0.0000 yes
T23 26918K 20.46 0.0006 0.0000 yes
T24 26936K 20.23 0.1057 0.0140 no
T25 26866K 19.83 0.0009 0.0157 no
T26 26941K 16.64 0.1074 0.0178 no
T27 26884K 19.27 0.1600 0.0000 no
T28 26908K 16.40 0.2059 0.0000 no
T29 26898K 16.33 0.1168 0.0000 yes
T30 26866K 16.13 0.0036 0.0000 yes
T31 969K 7.06 0.1084 0.0000 yes
T32 1472K 10.63 0.0739 0.0050 no
T33 1159K 8.33 0.2726 0.0000 yes
T34 1123K 8.17 0.0803 0.0000 yes
T35 1038K 7.49 0.0678 0.0000 yes
T36 1089K 8.10 0.5901 0.1083 yes
T37 1031K 7.55 0.1186 0.0124 no
T38 1189K 6.94 0.1128 0.0000 yes
T39 1279K 7.82 0.0426 0.0000 yes
T40 1299K 7.72 0.0732 0.0053 no
T41 28313K 31.2 0.1947 0.0730 no
T42 29246K 41.43 0.1002 0.0534 no
T43 28079K 28.21 0.4036 0.3682 no
T44 28605K 34.88 0.0068 0.0000 no
T45 28385K 32.31 0.0375 0.1803 no

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fit-
ness score of the champion on the noisy training data is listed in the (Train-NLSE)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .0698 average fitness) (Note5: the ab-
solute accuracy of the SR is given in the (Absolute) column with 27 absolutely
accurate)
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In Table 3 and Table 4, the Test column contains the identifier of the
sample test problem (T01 thorugh T45). The WFFs column contains the
number of regression candidates tested before finding a solution. The Train-
Hrs column contains the elapsed hours spent training on the training data
before finding a solution. The Train-NLSE column contains the fitness score
of the champion on the noisy training data. The Test-NLSE column contains
the fitness score of the champion on the noiseless testing data. The Absolute
column contains yes if the resulting champion contains a set of basis functions
which are algebraically equivalent to the basis functions in the specified test
problem.

The added training noise causes many problems. Even absolute accuracy
is somewhat fragile under noisy training conditions. For instance in case of
the target formula y = 1.0 + (100.0*sin(x0)), the SR will be considered abso-
lutely accurate if the resulting champion, after training, is the formula sin(x0).
Clearly a champion of sin(x0) will always achieve a zero NLSE on noiseless
testing data, but only if trained on noiseless training data. If a champion of
sin(x0) is trained on noisy training data, the regression coefficients will almost
always be slightly off and the champion will NOT achieve a zero NLSE even
on noiseless testing data. So even an absolutely accurate champion (contain-
ing the correct basis functions) may not achieve extreme accuracy on noiseless
testing data because the coefficients will have be slightly off due to the noise
in the training data.

Since we have introduced 20% noise into the training data, we do not
expect to achieve extremely accurate results on the noiseless testing data.
However, we can hope to achieve highly accurate results on the testing data.
For the purposes of this chapter, highly accurate will be defined as any
champion which achieves a normalized least squares error (NLSE) of .2 or
less on the noiseless testing data. In the tables of results, in this chapter,
the noisless test results are listed under the Test-NLSE column header.

The random noise added is normally distributed and symmetric (as nor-
mally distributed as the random function can achieve). The study of asym-
metric noise and non-normally distributed noise will be left to another paper.

The results in baseline Table 3 demonstrate only very intermittant accu-
racy on the 45 test problems. Baseline accuracy is fragile in the face of training
noise. High accuracy on the noiseless testing data is infrequently achieved in
12 of the 45 test problems. Absolute accuracy on the noiseless testing data is
rarely achieved in 2 of the 45 test problems. There is a great deal of overfit-
ting as evidenced by the number of test cases with good training scores and
very poor testing scores. Furthermore, there is a great deal of bloat which
is why absolute accuracy is rarely achieved (i.e. the baseline algorithm rarely
discovers the correct target formula).

Significantly, the EA results in Table 4 consistantly demonstrate high
accuracy in 40 of the 45 test problems. Noteably, the EA algorithm does
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achieve frequent absolute accuracy, even in the face of the noisy training data,
in 27 of the 45 test problems. This absolute accuracy is robust even in the face
of problems with large number of features (i.e. the EA algorithm frequently
discovers the correct target formula).

Notice the EA’s failure to achieve high accuracy in TestCaseT10. Even
though the EA discovered the absolute accurate basis function, the noisy
training data caused the coefficients to be seriously skewed. Additionally, the
EA’s problem with absolute accuracy in TestCaseT12 is a case in point.
Noteably, the EA algorithm actually does discover the absolute answer; but,
on the noisy training data, the final fitness score of the correct answer is worse
than the final fitness score of a multivariable formula (containing the correct
formula). Faced with this better fitness score, the EA chooses the incorrect
answer as its primary choice and the correct answer as a secondary choice.
The EA has no way of descerning that the added noise has so seriously altered
the training landscape.

Nevertheless, even with all these issues, the EA algorithm achieves a level
of acuracy and search efficiency which raises SR to new level of performance
on noisy training data.

4 Noisy Training With Range Shifting Testing

In Table 5 and Table 6 we compare the SR performance of the baseline
algorithm and the EA algorithm, on noisy training data with range shifted
testing data, using statistical best practices out-of-sample testing methodol-
ogy, requires the following procedure. For each sample test problem, a training
matrix of independent variables is filled with random numbers between 0 and
1. Then the specified sample test problem formula is applied to produce the
dependent variable. Then 20% noise is added to the dependent variable ac-
cording to the following formula: y = (y*.8) + random(y*.4). These steps will
create the training data. A symbolic regression will be run on the training
data to produce the champion estimator. Next a testing matrix of indepen-
dent variables is filled with random numbers between -1 and 0. Then the
specified sample test problem formula is applied to produce the dependent
variable. No noise is added to the testing dependent variable. These steps will
create the testing data. The fitness score is the root mean squared error di-
vided by the standard deviation of Y, NLSE. The estimator will be evaluated
against the testing data producing the final NLSE for comparison.

Notice the range shifted testing data in Table 5 and Table 6. All training
is performed on data between 0 and 1. The SR has never seen a negative
number. Furthermore, 20% noise is added to the dependent variable during
training. Finally, the testing data is in the range -1 to 0. These are mostly
negative numbers which the SR has never seen during training.
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Table 5. Baseline Accuracy Range Shifting

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute
T01 1666K 20.00 0.2314 0.0251 yes
T02 1742K 20.00 0.0356 0.0007 no
T03 1675K 20.00 0.1467 0.0393 no
T04 1757K 20.00 0.0413 0.0003 no
T05 1491K 20.00 0.3619 0.0889 no
T06 1785K 20.00 0.5413 0.4399 no
T07 1896K 20.00 0.0377 0.0579 no
T08 1832K 20.00 0.0336 0.1600 no
T09 1619K 20.00 0.3800 0.9998 no
T10 1655K 20.00 0.8966 0.9998 no
T11 1765K 20.00 0.8836 0.9999 no
T12 1653K 20.00 0.0017 0.0106 no
T13 1788K 20.00 0.5727 0.0824 no
T14 1808K 20.00 0.8814 0.7037 no
T15 1857K 20.00 0.6017 0.0477 no
T16 1426K 20.00 0.0117 0.9999 no
T17 1749K 20.00 0.1115 0.0540 no
T18 1681K 20.00 0.8853 0.9999 no
T19 1770K 20.00 0.3066 0.5472 no
T20 1381K 20.00 0.0011 0.0006 no
T21 1811K 20.00 0.3383 0.1484 no
T22 1838K 20.00 0.0453 0.1881 no
T23 1732K 20.00 0.0000 0.0000 no
T24 1831K 20.00 0.2500 0.0324 no
T25 1884K 20.00 0.0428 0.4828 no
T26 1686K 20.00 0.3089 0.1358 no
T27 1613K 20.00 0.4922 0.0715 no
T28 1468K 20.00 0.8754 0.8360 no
T29 1726K 20.00 0.2747 0.3448 no
T30 1638K 20.00 0.0070 0.5507 no
T31 448K 20.00 0.3765 0.3907 no
T32 453K 20.00 0.2953 0.2615 no
T33 462K 20.00 0.2783 0.1566 no
T34 387K 20.00 0.6321 0.1958 no
T35 534K 20.00 0.1813 0.0617 no
T36 460K 20.00 0.6561 0.2358 no
T37 518K 20.00 0.0974 0.0124 no
T38 1759K 20.00 0.3503 0.4808 no
T39 1734K 20.00 0.0224 0.2714 no
T40 1633K 20.00 0.0124 0.2066 no
T41 571K 20.00 0.4867 0.3647 no
T42 597K 20.00 0.3211 0.3328 no
T43 599K 20.00 0.4478 0.2434 no
T44 635K 20.00 0.6385 0.8469 no
T45 741K 20.00 0.0514 0.9999 no

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fit-
ness score of the champion on the noisy training data is listed in the (Train-NLSE)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .3357 average fitness) (Note5: the absolute
accuracy of the SR is given in the (Absolute) column with 1 absolutely accurate)
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Table 6. Extreme Accuracy Range Shifting

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute
T01 26912K 13.23 0.2308 0.0000 yes
T02 26832K 12.71 0.0326 0.0000 yes
T03 26868K 13.05 0.1586 0.0000 yes
T04 26937K 13.42 0.05426 0.0000 yes
T05 26820K 12.7 0.3626 0.0000 yes
T06 26884K 13.03 0.4908 0.0000 yes
T07 26885K 12.96 0.0527 0.0616 no
T08 26908K 12.21 0.0621 0.0000 yes
T09 26880K 11.85 0.1686 0.0000 yes
T10 26870K 13.04 0.8927 0.9999 no
T11 26862K 12.98 0.8969 0.9999 no
T12 26865K 12.94 0.0017 0.0008 no
T13 26905K 13.27 0.5626 0.0716 no
T14 26914K 13.30 0.8820 0.1826 no
T15 26836K 12.21 0.6426 0.0158 yes
T16 26859K 12.80 0.0198 0.9999 no
T17 26861K 12.96 0.1223 0.0000 yes
T18 26832K 12.66 0.9050 0.9999 no
T19 26895K 13.09 0.3130 0.0635 no
T20 26981K 13.61 0.0013 0.1339 no
T21 26885K 13.06 0.3445 0.0808 no
T22 26956K 13.42 0.0449 0.0172 no
T23 26838K 11.91 0.0002 0.0000 yes
T24 26857K 11.87 0.2541 0.0140 no
T25 26971K 13.49 0.0425 0.0031 no
T26 26984K 13.56 0.3175 0.1258 no
T27 26892K 13.06 0.4942 0.0942 no
T28 26871K 12.88 0.8860 0.9999 no
T29 26896K 13.03 0.1359 0.0000 yes
T30 26882K 12.89 0.0036 0.0000 yes
T31 969K 7.10 0.3842 0.0609 no
T32 969K 7.08 0.2776 0.0287 no
T33 975K 7.09 0.2830 0.0139 no
T34 764K 7.51 0.6563 0.0000 no
T35 1094K 8.02 0.1594 0.1042 no
T36 723K 7.01 0.6640 0.1870 no
T37 1121K 8.15 0.0992 0.0073 no
T38 1560K 8.97 0.2616 0.2316 no
T39 1228K 7.46 0.0069 0.0000 yes
T40 1995K 14.80 0.0052 0.0066 no
T41 28632K 35.34 0.4616 0.9392 no
T42 28700K 37.84 0.2008 0.1363 no
T43 27144K 17.32 0.3983 0.2914 no
T44 27670K 24.78 0.5973 0.8458 no
T45 28694K 37.34 0.0532 0.0020 no

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fit-
ness score of the champion on the noisy training data is listed in the (Train-NLSE)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .1937 average fitness) (Note5: the ab-
solute accuracy of the SR is given in the (Absolute) column with 14 absolutely
accurate)
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The baseline algorithm and the EA algorithm will be trained on each of
the 45 sample test problems for comparison. Each algorithm will be given a
maximum of 20 hours for completion, at which time, if the SR has not already
halted, the SR run will be terminated and the best available candidate will be
selected as the final estimator champion.

In Table 5 and Table 6, the Test column contains the identifier of the
sample test problem (T01 thorugh T45). The WFFs column contains the
number of regression candidates tested before finding a solution. The Train-
Hrs column contains the elapsed hours spent training on the training data
before finding a solution. The Train-NLSE column contains the fitness score
of the champion on the noisy training data. The Test-NLSE column contains
the fitness score of the champion on the noiseless range-shifted testing data.
The Absolute column contains yes if the resulting champion contains a set
of basis functions which are algebraically equivalent to the basis functions in
the specified test problem.

For the purposes of this chapter, extremely accurate will be defined
as any champion which achieves a normalized least squares error (NLSE) of
.0001 or less on the noiseless range-shifted testing data. In the table of
results, at the conclusion of this chapter, the noisless test results are listed
under the Test-NLSE column header.

Since we have introduced 20% noise into the training data and range-
shifted the testing data, we do not expect to achieve extremely accurate results
on the noiseless testing data. However, we can hope to achieve highly accurate
results on the testing data. For the purposes of this chapter, highly accurate
will be defined as any champion which achieves a normalized least squares
error (NLSE) of .2 or less on the noiseless range-shifted testing data. In the
tables of results, in this chapter, the noisless range-shifted test results are
listed under the Test-NLSE column header.

As mentioned, each of the problems were trained and tested on from 25 to
3,000 features as specified using out of sample testing. The allocated maximum
time to complete a test problem on our laptop environment was 20 hours, at
which time training was automatically halted and the best champion was
returned as the answer. However, most problems finished well ahead of that
maximum time limit.

All timings quoted in these tables were performed on a Dell XPS L521X
Intel i7 quad core laptop with 16Gig of RAM, and 1Tb of hard drive, manu-
factured in Dec 2012 (our test machine).

Note: testing a single regression champion is not cheap. At a minimum
testing a single regression champion requires as many evaluations as there are
training examples as well as performing a simple regression. At a maximum
testing a single regression champion may require performing a much more
expensive multiple regression.
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The random noise added is normally distributed and symmetric (as nor-
mally distributed as the random function can achieve). The study of asym-
metric noise and non-normally distributed noise will be left to another paper.

The results in baseline Table 5 demonstrate poor accuracy on the 45
range-shifted test problems. Baseline accuracy is extremely fragile in the face
of training noise and range-shifted testing data. High accuracy on the noiseless
testing data is achieved in 22 of the 45 test problems. Absolute accuracy on the
noiseless testing data is rarely achieved in 1 of the 45 test problems. There is
a evidence of overfitting as shown by the several test cases with good training
scores and very poor testing scores. Furthermore, there is a great deal of bloat
which is why absolute accuracy is rarely achieved (i.e. the baseline algorithm
rarely discovers the correct target formula).

Significantly, the EA results in Table 6 also suffer from the range-shifted
data, yet consistantly demonstrate high accuracy in 33 of the 45 test problems.
Noteably, the EA algorithm does achieve frequent absolute accuracy, even in
the face of the noisy training data, in 14 of the 45 test problems. This absolute
accuracy is robust even in the face of problems with large number of features
(i.e. the EA algorithm frequently discovers the correct target formula even in
range-shifted trating data).

Notice the EA’s average fitness NLSE score on the range-shifted testing
data is .1937. Indicating that the average EA NLSE score is highly accurate.
Whereas the Baseline’s average fitness NLSE score on the range-shifted data
is .3357. the EA algorithm achieves a level of acuracy and search efficiency
which raises SR to new level of performance on noisy training data and range-
shifted testing data. The pursuit of absolute acuracy has definitely benefitted
the EA algorithm over its Baseline precursor algorithm.

5 Conclusion

In a previous paper (Korns 2011), significant accuracy issues were identified for
state of the art SR systems. It is now obvious that these SR accuracy issues are
due primarily to the poor surface conditions of specific subsets of the problem
space. For instance, if the problem space is exceedingly choppy with little
monotonicity or flat with the exception of a single point with fitness advantage,
then no amount of fiddling with evolutionary parameters will address the core
issue.

In (Korns 2013), an EA algorithm was introduced with an informal argu-
ment asserting extreme accuracy in a number of noiseless test problems. This
enhanced algorithm contains a search language and an informal argument,
suggesting a priori, that extreme accuracy will be achieved on any single iso-
lated problem within a broad class of basic SR problems. In (Korns 2014), the
EA algorithm was enhanced to include extreme accuracy on noiseless large
feature test problems.
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In this paper we test the enhanced EA algorithm measuring levels of ex-
treme accuracy on problems with noisy training data, and with range shifted
testing data. The results support the view that the persuit if high accuracy
algorithms in noiseless training data also conveys distinct and measurable ad-
vantages with noisy training data and and range shifted testing data. In fact,
for both noiseless training data and when trained on noisy training data, then
tested on range shifted testing data, the enhanced EA algorithm is measur-
ably faster and more accuracte than the baseline algorithm. This places the
Extreme Accuracy algorithm in a class by itself.

The new EA algorithm introduces a hybrid view of SR in which advanced
evolutionary methods are deployed in the extremely large spaces where serial
search is impractical, and in which the intractable smaller spaces are first
identified and then attacked either serially or with mathematical treatments.
All academics and SR researchers are heartily invited into this newly opened
playground, as a plethora of intellectual work awaits. Increasing SR’s demon-
strable range of extreme accuracy will require that new intractable subspaces
be identified and that new mathematical treatments be devised.

Future research must explore the possibility of developing an Extreme
Accuracy algorithm for the related field of symbolic multinomial classification.

Finally, to the extent that the reasoning in this informal argument, of
extreme accuracy, gain academic and commercial acceptance, a climate of
belief in SR can be created wherein SR is increasingly seen as a ”must have”
tool in the scientific arsenal.

Truely knowing the strength’s and weaknesses of our tools is an essential
step in gaining trust in their use.
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